

Mike Mapes

July 25-27, 2005







#### **SCOPE OF WORK**

#### **WBS 1.7.1 Beam Pipes and Chambers**

Design, fabrication, procurement, assembly and vacuum processing of chambers/beam pipes and vacuum fittings/components. Design and procurement of heating blankets.

#### WBS 1.7.2 Instrumentation& Controls (I&C)

Design, fabrication, procurement, assembly and testing of a PLC based controls system which monitors and controls pumps, gauges and valves and provide vacuum interlocks.

#### **WBS 1.7.3 Pumps**

Design, specification, procurement, assembly and testing of Cryo, Diffusion, Ion, NEG, Titanium and Turbo molecular vacuum pumps.

#### WBS 1.7.4 Valves

Design, specification, procurement, assembly and testing of vacuum valves.







## **VACUUM SYSTEM SCHEMATIC**



#### **VACUUM DEVICE LEGEND**

- (X) VALVE
- (G) CCG/PIRANI GAUGE
- C CRYO PUMP
- IP ION PUMP
- T TURBO PUMPING STATION
- TSP TITANIUM SUBLIMATION PUMP
- NEG NON-EVAPORABLE GETTER PUMP
- D DIFFUSION PUMP



#### **TYPICAL SECTOR**

- •GAUGES- ATM.-10<sup>-11</sup> TORR
- •PUMPS- CRYO, NEG....
- •GATE VALVES-
  - **SECTOR/PUMP ISOLATION**







#### **Vacuum Requirements**

- •EBIS 10<sup>-10</sup> Torr, in situ baked 250°C
- •LEBT, RFQ, MEBT & IH LINAC -Vacuum levels of 10<sup>-8</sup> and 10<sup>-9</sup> Torr are sufficiently low for the partially stripped low energy ion beams for all these regions due to the single pass nature.
- •**HEBT-** Vacuum of 10<sup>-10</sup> Torr is needed in the last section of HEBT to minimize the diffusion of residual gas into the 10<sup>-11</sup> to 10<sup>-12</sup> Torr Booster ultrahigh vacuum system. In situ baked 150°C

#### **Vacuum Design Parameters**

- •Only UHV compatible materials used stainless steel and ceramics
- No organic materials allowed
- •Stainless steel chambers, Inconel bellows
- Conflat flanges- high reliability low cost
- •All components/chambers cleaned and vacuum fired to UHV standards







# VACUUM SYSTEMS SUMMARY TABLE

| <b>SYSTEM</b> | <u>PUMPS</u>                  | <u>VALVES</u>             | <b>GAUGES</b>     | <b>PRESSURE</b>                         | BAKED  |
|---------------|-------------------------------|---------------------------|-------------------|-----------------------------------------|--------|
| EBIS          | 3 CRYO, NEG<br>2 TSP, 3 TURBO | 7-10"CF, 1-6"CF<br>1-8"CF | 5 CCG<br>5 PIRANI | 10 <sup>-10</sup> Torr                  | 250° C |
| IS            | 2 DIFFUSION<br>2 TURBO        | 2-10"CF,4-6"CF            | 4 CCG<br>4 PIRANI | 10 <sup>-8</sup> -10 <sup>-9</sup> Torr | No     |
| LEBT          | 1 CRYO<br>1 TURBO             | 3-8"CF,2-10"CF<br>1-6"CF  | 2 CCG<br>2 PIRANI | 10 <sup>-8</sup> -10 <sup>-9</sup> Torr | No     |
| RFQ           | 2 CRYO                        | 2-10"CF, 1-6"CF           | 1 CCG<br>1 PIRANI | 10 <sup>-8</sup> -10 <sup>-9</sup> Torr | No     |
| MEBT          | 1 ION PUMP                    | 1-6"CF                    | 1 CCG<br>1 PIRANI | 10 <sup>-8</sup> -10 <sup>-9</sup> Torr | No     |
| LINAC         | 2 CRYO                        | 2-10"CF,1-6"CF            | 1 CCG<br>1 PIRANI | 10 <sup>-8</sup> -10 <sup>-9</sup> Torr | No     |
| HEBT          | 5 ION PUMPS<br>NEG            | 7-6"CF                    | 3 CCG<br>3 PIRANI | 10 <sup>-10</sup> Torr                  | 150º C |







## **INSTRUMENTATION & CONTROL SCHEMATIC**









## **EBIS** Beam line layout





- •CROSSES LTB LINE
- **•**CONNECTS TO TTB LINE
- •MODIFICATIONS TO BOTH LINES











- Historical Cost used throughout vacuum systems estimate since it is very similar to other vacuum systems recently installed or upgraded.
- Standardization to Existing Vacuum Systems In C-AD Complex
  - Inverted magnetron CCG and controllers (RHIC)
  - 20 I/s sputter ion pumps (Booster) and controllers (RHIC)
  - NEG cartridge pumps and NEG strip (Booster, NSRL)
  - Turbopump stations with dry backing pumps (RHIC)
  - PLC based vacuum monitoring and control (Booster, AGS, RHIC, NSRL)
  - PLC based bakeout system monitors and controls baked section (RHIC, Booster, NSRL)
  - Gate valves and roughing valves (Booster, RHIC, NSRL)
- Use commercially available vacuum fittings, flanges, seals, etc.
  wherever possible and avoid custom fabrications.







#### Major procurements (in FY05 direct dollars):

- Cryopumps with compressors \$112K
- Turbopumps \$144K
- Gate Valves (10",8" and 6") \$104K

#### **Technical Risk Factor:**

 LOW RISK – Since designs are based on proven existing vacuum systems designs in C-AD complex









### Estimated Cost

|                    |             | Direct FY'05\$ |       |             |       |
|--------------------|-------------|----------------|-------|-------------|-------|
| WBS                | Description | Mat'l          | Labor | Contingency | Total |
| 1.7 Vacuum Systems |             | 760            | 305   | \$215 (20%) | 1280  |

#### Labor hours/equivalents

| Resource Category     | estimated |  |
|-----------------------|-----------|--|
| Resource Category     | hours     |  |
| Scientist             | 150       |  |
| Engineer              | 1,750     |  |
| Designer              | 1,200     |  |
| Technician            | 1,500     |  |
| Building Trades       | 250       |  |
| Total                 | 4,850     |  |
| Full Time Equivalents | 2.8       |  |



